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Abstract. Perturbations of W D .  and W3 conformal theories which generalize the (1,Z) 
perturbations of conformal minimal models are shown to be integrable by ‘counting arguments’. 
The AE<,,q and D f ;  symmetries of corresponding S-matrices are conjectured and proved by 
explicit constmction of conserved non-local charges in the WDg ose with the proper quantum 
symmehy group. The gradation change of the known R - d x  with A?’ SymmeVy from 
homogeneous to spin, which turns out to be relevant for the perturbation considered, is shown 
to make the R-maauix crossing invariant and fixes the effective coupling constant as a function of 
the initial one. Using these results the fundamentd S-matrix for vector pelturbed minimal W D ,  
models is constructed on the basis of the RSOS model with the corresponding symmetry. The 
S-matrix is checked to reproduce the known results in two panicular cases of minimal model 
number: k = I and k + m. 

1. Introduction 

In recent years, many massive integrable perturbations of Virasoro minimal models were 
found and S-mawices for them were constructed. The spectrum of such perturbations seems 
to be richer and the S-matrices much more complicated for the perturbations of conformal 
field theories (CFrs) with additional affine symmetries. Most such theories may be expressed 
as coset constructions of some Kac-Moody algebras at certain levels. Among these theories 
are adjoint perturbations of W-invariant theories [ I  I] built on A,  series of Lie algebras (see, 
for example, [S, 121) and for olher series 1131. 

The study of integrable perturbations of Virasoro minimal models showed [ l ]  that the 
structure of the (1.2) perturbation of minimal CFT, corresponding at the classical level 
to the Zhiber-Mikhailov-Shabat model, and its factorized scattering theory (FST), is more 
complicated then the structure of the (1,3) perturbation, which classically corresponds to 
the SineGordon model. After the work of Fateev and Zamolodchikov [3], it was not 
clear whether there existed some general description of FST and a symmetry of the (1,2) 
perturbations of minimal models, because the FST symmetry group discovered turned out 
to be very different: Es,  E7 and E6 for the p = 3, 4 and 6 minimal models, respectively. 
Nevertheless, the general solution with A:) FST symmetry of any ( I ,  2) perturbed minimal 
model was found by Smimov [2], which reproduces the previously known solutions as 
particular cases; however, this reproduction is essentially non-wivial and is based on the 
properties of the representations of s1(2), at special values of q equal to the root of unity. 
More detailed investigation of the (1,2) perturbation was done in [22] and [23]. 

Along with integrable perturbations of conformal models with Virasoro and Kac-Moody 
algebras, perturbations of CFT with other additional symmetries and their FST have also been 
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studied. In [4] a few integrable perturbations of the CFT ZN parafermionic models were 
studied, which are the lowest minimal models of W-invariant theories. The ( I ,  3) integrable 
perturbation of CFr was naturally generalized to 1V-invariant theories as a perturbation by 
the field corresponding to the adjoint representation of the algebra A, ,  and their FST was 
constructed in [ I l l .  In 141 and [ I l l  the vacuum structure of the theory was conjectured to 
be in correspondence to the admissibility diagram of some interaction-round-the-face (IRF) 
models, and in [ 111 the S-matrix of the model was explicitly constructed by solving the 
Yang-Baxter equation with the use of A. invariant IRP Boltzmann weights. The integrability 
of such a perturbation of an adjoint type for WX-invariant theories constructed on an 
arbitrary Lie group X (treated as the coset construction X, x X,/Xp+j, see, for example, 
[5]) has been known for a long time, and Some examples of corresponding FST for these 
models (&, C.. D, and a few others) were discussed, for example, in few recent works 
of Gepner [15]. At  the classical level the trivial reason for integrability of the adjoint-type 
perturbation is expressed by the fact of correspondence of &j to the maximal positive root 
of the algebra such that together with screening operators of the WX-invariant theory they 
form X-invariant affine Toda field theory (ATFT) with imaginary coupling constant [16]. In 
this sense the ( I ,  2) perturbation of the Virasoro minimal models may be called a vector-type 
perturbation (with respect to sl(2)).  

The natural question arises: are there integrable perturbations of CFT to W-invariant 
theories? Recently the existence of such perturbations was pointed out [ 171. It was 
conjectured that, W D p ’  + 6“- for n > 3 is integrable, where q L t  is the primary 
field corresponding to the fundamental weight of vector representation of Dn (the field 
(21 1 . . . 1 11 1 . . , I )  in the notation of [51). The hint for the integrability of such perturbed 
model is actually seen even at the ‘classical’ level, since the perturbing field, together 
with the screening operators of the WDn, give rise to the B. imaginary coupled A T .  It 
was conjectured that the FST of this integrable model should have Ag)-l,q symmetry. For 
n = 2 it  was found that the corresponding analogue of this integrable vector perturbation is 
WA?) + (21111), and the symmetry of the corresponding FST was conjectured to be Of’ ,  
In this case the Hamiltonian of the perturbed model completed by the screening operators 
of W A z  (or W, in the usual notation) forms the Gz imaginary coupled ATFT. 

Checks of integrability of W3 and WD3,  which were done in [ 171, are exact for irrational 
values of central charge, since using the counting of arguments they did not take into account 
the summation over the root lattice in the formula of W characters, ignoring the highest null 
vectors. The suggestion of the symmetry of the FST theory in this work was done analysing 
the p -+ CO and is in complete correspondence with the non-simply-laced duality of real 
coupled AT observed recently in [6,l8]. 

Here we will study the abovedescribed vector erturbations of W D ,  (and W3) theories 
in more detail, showing explicitly the presence of Aa-l ,q  symmetry with the help of the non- 
Iocal currents of the model, and then discuss the S-matrix construction on the basis of the 
AE’-l,q-symmetric R-matrix built in [19]. In section 2 we start from a more rigorous check 
of integrability by the counting of arguments with exact calculation of the W-characters at 
rational values of central charge (minimal models). I n  section 3 non-local charges for n=3 
case with the algebra A:: are constructed explicitly, and a possible solitonic representation 
for it is presented. In section 4 the role of the gradation chosen for the R-matrix (as a 
starting point for construction of the S-matrix), which commutes with the comultiplication 
thus obtained, is discussed. It is shown that the spin gradation, in which the non-local 
charges naturally arise, makes the R-matrix crossing invariant. Moreover, it  turns out that 
gradation transformation fixes the effective coupling constant as a function of the initial one. 

8, 
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In section 5 we construct the S-matrix on the basis of the IRF Boltzmann weights found 
recently in [IO] and check the S-matrix thus obtained for some particular cases where we 
expect its form to coincide with some known S-matrices. 

2. Vector perturbations and their integrability 

Before starting with the Hamiltonian of the vector perturbation for the W3 minimal models 
in the free field representation, we recall the standard notation of primary fields [6] for 
the WXip) minimal model. The primary field @(11c) is characterized by the set of integers 
( 1 1 ,  . . . , l , l l i ,  . . . , l ; ) ,  where r is the rank of X,. It can be written as 

@fLli,) =: e'P+(z) : 

where a+ = ,/m, U- = - y / m .  and wi are the fundamental weights of the 
algebra X,. The screening fields are : einao;+(z), where ai, i = 1, . . . , r ,  are positive roots 
of x,. 

Consider the Hamiltonian for the perturbation of W3 conformal theory by the operator 
@(z1111) which has the dimension ' j ( l - 4 / ( p  + 1)) in the ( p ,  p + 1) unitary minimal model. 
This Hamiltonian may be written as 

The set of vectors (a! ,  az, -WI) expressed, for example, in the standard orthonormal basis 
(el - ez. e2 - e3, ?el - - $4, obviously forms the set of roots of the CZ affine 
algebra. This fact allows us to consider the above perturbed CF? as a good candidate for 
the integrable model, which is the Gz A m  with an imaginary coupling constant, and its 
conserved currents should have spins equal to the exponents of G2 (3.5) modulo its Coxeter 
number (6). But we should be convinced that the integrability also survives at the quantum 
level, and the simplest way to check it is by the counting of arguments. The dimensions of 
the Verma module can be extracted from the characters of the highest-weight representations 
of the corresponding W-algebra Using the character formula (see, for example, [5]) for the 
'completely degenerate' representations of the W-algebra 

2 I 

where (0, a') = (U#, wil") is the primary field in the notation of ( I ) .  the sums run over 
the elements 3 of the Weyl group w and the root lattice of the Lie algebra of the rank 
r ,  and p is the number of minimal model, we found (with the help of Mafhemafica) that 
according to their Virasoro levels n = 2, . . . , 10 the dimensions of the Verma module of the 
perturbing field (2111 1) modulo the total derivatives are (1, 1,2,2,3,4,6,6,  10) for p = 4, 
(1, 1,3,3,6,7, 13, 15,s) for p = 5, and (1, I .  3,3,6,7, 13, 15,26) for p 2 6. The same 
dimensions calculated for the unity operator ((lllll)-field) are ( I ,  1, 1, 1.3, 1,4,4,6) for 
p = 4 and (1.1,1,1,4.2,7,7,12) for p > 5 .  Comparing the dimensions of levels which 
correspond to spin 5 ,  we see that there is a conserved current of that spin, as it should be 
according to our observation on the G2 ATFT structure of the perturbed theory (5 is one of 
the exponents of G:)) .  
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In the same way if we perturb the WO,? minimal theory with the central charge 
(2n - 2 ) ( k  - 1) 

by the operator 0~21.,,1111...1) with the conformal dimension 

k 
A =  

2(2n - 1 t k )  

(4) 

it easily can be seen that the set of screening vertex operators, together with the perturbing 
one, form the potential of the imaginary coupled E, ATFT. 

Let us highlight two remarkable facts here, which will be used and discussed later. In 
the limit k + w the conformal dimension of the perturbation is going to 1. Another feature 
is that for each n the central charge of the lowest minimal model k = 1 is equal to 1. 

The check of counting arguments in this case by use of equation (3) gives 
the following sequences of dimensions of the Verma module at different Viasoro 
levels (spins) 2,. .,, 11: (i) n = 3 (1, 1.2, 1,5,4, 11, 11,22,26) for the unity 
operator and (2,1,5,5, 12, 14.28,36,64,85) for the perturbing one; (ii) n = 4 
(1,O. 3,0,5,2,11,7,22, 19) for the unity operator and (1 .2,3,5,9,13,22,33,52,77)  for 
the perturbing operator: (iii) n = 5 (1-0.2, 1,4,2.9.7, 18, 18) for the unity operator and 
(1,l.  4,3,9,10,21,26,48,63) for the perturbing operator. So we see the existence of 
conserved charges of spin 3 for each n and even a charge of spin 5 for the n = 5 case, in 
full correspondence with the exponents of the B. ~ m .  

As we mentioned in the introduction, the conjectured symmetries of the factorized S- 
matrices for these integrable field theories are expressed by the algebras which are dual to 
the corresponding non-simply-laced ATFr (with an imaginary coupling constant), i.e. D f )  
for Gz and for B,. In the next section \*‘e shall build explicitly non-local charges 
in the vector perturbed WO?) theory which form the A:: algebra and shall discuss its 
representation by fundamental solitons. 

3. Algebra of non-local charges and its representation 

The construction of non-local charges with si@), symmetry algebra in Sine-Gordon theory 
obtained as perturbations of minimal unitary conformal models was done in [20,21]. There 
it was shown how this construction may be generalized to any A m  with another symmetry 
group, and in [22] the results of Smirnov for the S-matrix of (1,2) perturbations of minimal 
models were reproduced from the point of view of non-local charges. In this section we 
shall follow [22] and construct non-local charges for the integrable model WD:p)+0(2111111) 

which form the algebra Ai!:. The Di3) case is somewhat more special and its detailed 
consideration with its R- (S-)matrix construction is now under investigation. 

So, we are going to consider the perturbed WD?’ theory with the Hamiltonian 

1 dZz (e-iP(Ot-W + e-iB(Oz-O,) + ,-iP(Oz+%) + eiPO, 

where @i(z ,  2) = 4i(z)+&(Z), i = 1 ,2 ,3  are free fields of WD3, h is the coupling constant 
of the perturbation, and @ = ,/m. We briefly recall the method for constructing 
non-local conserved charges of a perturbed cm ([I, 20,211). If we assume the existence of 
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some conserved chiral currents J(z), j ( i )  for a non-perturbed CFr then for the perturbed 
currents we have the following Zamolodchikov equations up to first order: 

If the operator product expansions (OPE) in these contour integrations have the form 

then the Zamolodchikov equations take the form 

S J ( z ,  2) = aB(z, i) 
a j ( z , i ) = 6 H ( z , i )  

where 

H ( z .  i) = A(L(2, i) t f ( z ,  i)) 
H ( z ,  i) = ,I.(h(z, i) + f ( z ,  i)) 

which means that the conserved charges 

must exist. For the case under consideration the ‘maximal’ set of currents which satisfies 
equations (8) is 
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with the spins of the charges (10) 

We should recall now that the quasi-chiral components &, & of the Toda free fields @pi 

commute only in the absence of the perturbation h = 0, but in general their vertex operators 
obey certain braiding relations (see [201). Omitting details, we will give the result which 
can easily be checked by the use of these braiding relations: the definition of the topological 
charges 

To = -2Tz - Ti - T3 
leads to the following algebra of charges: 

[Ti I Q j ]  = Aij Qj 
[Ti, Q,] = -AijQj 
Qi&-q-"vQjQi J = & j a , ( l - q 2 " )  

where 
2 0 - 1  

p i i j = (  - 1  1 -1  - I  2 -2 9) 
0 -2 

differs just by diagonal normalization from the Cartan matrix of the affine Lie algebra A?), 

(17) = e-ix/82 

is the deformation parameter of quantum group, and 
2 

i = o , 1 , 2  ai = - (-) BZ 
2n1 82- 1 
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which introduces the spectral parameter (e) dependence, transforms the algebra (15) into 
the quantum affine Lie algebra A$: with the Chevalley basis E;.  Fi, H, (i = 0, 1, 2,3) :  

[ H i ,  H,] = 0 
[Hi ,  E j ]  = AijEj  

The fundamental representation of this algebra can be chosen the same as for the 
AF) and the basis for Cartan subalgebra in this representation can be taken as HI = 
diag(l,O,O,O,O, -1); HZ = diag(O,l, O,O, -1,O); H3 = diag(O,O,l, - l , O ,  0); HO = 

The next natural step is the construction of the sextet of fundamental soliton fields for 
the model which will form the representation of the above written algebra of non-local 
currents. One of possible candidates can be chosen as @i* = e*(@)$;, where i = 1 , 2 , 3 ,  
or another choice : &+ = e*c/m@d. It can easily be checked by the standard technique of 
conformal field theory that any of these two sets of fields possesses the correct topological 
charges, namely 

-2n2 - H, - H ~ .  

[To, @I*] = 0 [To, @3*] = &+3* 

[Tz,@i*]=*@ii [ T z r @ z * ] = + @ z *  [T21@3'3+]=0 
[T3.@'1*]=72@'1+ [G.@z*]=O [T3,@3+]=0. 

Clearly each of the set of fields Q, $ suffers from the ill-defined action of the part of 
the charges Qi,  6; because of the branch cuts under the contour integrals in part of the 
operator product expansions Q + ,  and hence does not form the correct representation of 
the full algebra (15). But actually for our purposes here we need only the fields which 
will permit us to define braiding relations between currents and fundamental soliton fields 
which are compatible with the comultiplication structure of the revealed group Ai'). Using 
relations (21) one can show by the technique of the braiding relations of the vertices for 
fields 4 [20] that for the fields @ defined above the following braiding relations are valid: 

(22) 

[To, @w] = *@U 

(21) 
[c, + I . ]  = 0 [TI, @2*] = w z *  [Ti. @3*] = F k 3 *  

J i  (X)@,*(Y) = qC* @j* (Y)Ji ( x )  

& ( X ) @ , * ( Y )  = P j * + , d Y ) & ( X )  

for x c y ,  and commutation of J i ( x )  and @ j + ( y )  for x 2 y .  where the rij+ are the 
topological charges of the fields @j* with respect to Tj, and the latter can be read from (21). 
Such braiding relations induce the comultiplication 

A ( Q i )  = Qi 8 1 +qH' Q Qi  

A(Qi)  = Qi Q 1 +qH' Q Q i  

A(Hi) = Hi Q 1 + 1 8  Hi 

which acts on the tensor product of two-soliton states. 

4. S-matrix construction 

The S-matrix should commute with the comultiplication (23): 

IS, A(Hi)I = [S, NQi)l = [S. AtQi)] = 0. 
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Introducing the notation .$ = PS, where P is the permutation matrix, these equations can 
be rewritten as 

[SVi, ez), A(Hi)] = 0 

9(el, b) (ei Q q-"Jz + qH,/' D ei) = (q-Ha/2 Q ei t ei Q q H"z) .$(el, &L) 

S ( e l , e z ) ( f i e q - H ~ / Z + q  H.12 Q fi) = (4- H,lz Q fi + fi Q qHJ2)  &elI ez) 
(25) 

where 61.2 are the rapidities of the incoming particles, 

ei = x ; E i  fi = x ; ' F ;  xi = x i  (e,) = esse> (26) 
and the dependence of ej and fi on the rapidity (01 or 02) is defined by their positions in 
the tensor product (they depend on 8, in the first place, and on 62 in the second). 

A system of equations like (25) was solved with respect to S (without unitarity and 
crossing symmetry conditions) by Jimbo [19] for almost all affine algebras of symmetry of 
the R-matrix S i n  the vector representation (except for E!), E?), E t ) ,  Gf), F4('), E a ' ,  D$) 
cases), but he used another Cartan basis and his results were obtained in other gradation. 
His Cartan basis hi is connected with our basis Hi by the transformation 

hi 7 H I  - Hz hi = Hz - H3 hs = H2 + H3 ho = -2H1 (27) 
with acorresponding change in the Chevalley generators E;', 6'. The R-matrix was obtained 
in a homogeneous gradation, where the spectral parameter dependence x is introduced as a 
multiplier of only one of the Chevalley generators, which corresponds to the highest-weight 
of AS in its odd component of the Dynkin diagram automorphism decomposition-the root 
number 3 in our case. So in this homogeneous gradation 

eym = x E ;  fpm = x - ~ F ;  x = X(S, -el) 
(28) 

and the R-matrix S is a function of x .  If we want to make use of Jimbo's result for the 
AY' R-matrix in our S-matrix construction, we should change the homogeneous gradation 
into spin, (which, as we saw, was naturally dictated by the non-local charges of the system) 
by 'gauge' transformation of Jimbo's solution: 

k ( x ,  k) = UZ~R(X,  k)uil (29) 

ul2 = xo(el)- ~ : - ' h . 0 ' / 2 ~ X 0 ( b ) - ~ - ~ h . m / Z ,  (30) 

$'"'=E; ~ h " " = F ~  i = O , 1 , 2  

where 

Using the obvious relations 
yhr /2~!y-h . lZ  = Uu/zE! 
y h , / 2 ~ ! y - h n 1 2  = -Ujj/zF! (31) I Y I  

I Y I 

we have the following system of equations which fixes ai in (30): 
xo "l-aI/z-o,/2 = xo 

xo -m/2+03 = xo 

XQ -0 'x  = X I .  

xo -m/2taz = xo 
(32) 

Solving the first three equations, we have al = 4, a2 = a3 = 3, and the last equation gives 
us the important relation 

x = X ' X 0 ,  (33) 4 
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Since the dependence on the coupling constant 0 enters J i b o ' s  R-matrix only through its 
dependence on x ,  relation (33) gives us the effective coupling constant 6 as a function of 
B: 

Here we will write down the R-matrix with the A g - ,  symmetry group in the 
homogeneous gradation as obtained by Jimbo in [19] and will show its crossing symmetry 
transformation. It has the following form: 

R(x ,  k )  = (X - k*)(x + k") E,, @ E,, + k(x  - l)(x + k") 
a#" U#B.B' 

E,, @ Ea0 

and the matrices E.# = Si,Sja with indices a = 1,.  . . ,2n  and U' = 2n + 1 -U. 

under the change 
One can check that the R-matrix (35) has the following crossing transformation property: 

k" 
x + -- 

X (37) 
E,@ @ E,a + kL;'-p E,$ @ Ep-,  

the quantity k = x-'k-"R remains unchanged. 
Another sufficient property of (35) which one can check is its unitarily condition: 

k ( x , k ) k ( x - ' , k )  = (xik-' - x - d k ) ( x - f k - '  - x i k ) ( x l k - "  +x-ik")(,y-4k-" f X l k " ) .  

(38) 
One can now easily check for n = 3 using (37), (29), (30) with the previously found values 
of ai that the 'gauged' R-matrix k(x, k )  = 021 &x, k)u,' becomes crossing invariant, since 
the factor k'-P is now exactly compensated by 'U'-factors. Using this fact one can see 
that if we now look for the S-matrix in the form 

S(x, k )  = So(x, k)uz,k(x, k)a,' 

S o ( - k Y ,  k )  = S,(x, k) 

(39) 
where SO is some unitarizing factor, then it should obey the following system of crossing 
and unitarity conditions: 

(40) 
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S&, k)So(x-', k )  = [(xik-' - x-ik)(x-ik-' - x f k ) ] - '  

xI(xfk-" +x- ik") (x - fk -"  + x f k " ) ] - ' .  (41) 
Before we solve these equations, we would now like to fit the deformation parameter k 
with the coupling constant by use of the crossing transformation for the R-matrix solution 
(x 4 -x/P corresponding to 0 4 in - 8) then in the notation 

we get 

We have the usual crossing condition for SO: SO(0) = So(ia -8). and the unitarity condition 
(41) in the form 

1 
shF(0 - ia)shp(0+in)shf(0- iy)shF(0+iy)  

with 

y = + - ; > .  3 

(44) 

(45) 

Among the infinite number of solutions of (44) together with the crossing symmetry 
condition, one can choose the following one with the minimal number of poles on the 
physical ship: 

1 m shf (#+ia2i )sh$(0- ix(21+ 1)) 
S o ( e ) = * s h ~ ( 8 - i n ) s h f ( B - i y ) ~ s h ~ ( 8 - i x ~ ) s h ~ ( 0 + i n ( 2 1 +  1)) 

sh8(0-iy+ia(21+1))shP(B+iy-in2(1-t-  1)) 
X sh$(B+iy-in(21+l))sh8(0-iy+in2(1+ 1)) (46) 

CO dk sink0 sh % g + y - nk 
ch 2 

1 
s h F ( O - i a ) s h f ( 0 - i y )  

=i 

(47) 
(The connection between (46) and (47) is explained in the appendix). 

In principle the solution of crossing and unitarity conditions presented above could be 
enough for our goal, namely the construction of the S-matrix for the restricted model. In 
the above consideration coupling constant parameter f l  was arbitrary, but as is well known, 
the special and crucial property of minimal model perturbations i s  the rationality of p2, or 
in other words, the property of q to be a root of unity, namely 

The first choice in (48) is relevant for the perturbation under consideration, whereas the 
second corresponds to another integrable perturbation of the same model, (1 1 . . , 1121.. . l), 
which may be considered as a generalization of (2 , l )  perturbation of minimal Vuasoro 
models. As is well known the kink-kink S-matrix construction in the framework of the 
scheme presented needs the explicit kink-soliton correspondence including the Clebsh- 
Gordan coefficients at the root of unity for the tensor product of the quantum group vector 
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representations. Such a correspondence is equivalent to the change of basis and effectively 
means [8] the construction of IRF model based on the weight lattice of the same symmetry 
group (Ai2' in our case). Fortunately, such IRP models with the proper symmetry group have 
been constructed in 19,101 and we will use these results with some modifications explained 
below for our fundamental S-matrix construction. 

Let us note at this point that the effective coupling constant 6 ,  equation (34), as a 
function of k takes the following form when the first choice in (48) is taken: 

n(8 + 2k) '=  l O + k  ' 
(49) 

We will now write down the Boltzmann weights of the RSOS model based on the 
realization for this algebra made by using the Dn loop algebra [lo] (in contrast to the C. 
realized Boltzmann weights constructed in [9]). We will write them for the restricted 
model in the trigonometric limit and will use the notation of 191 and not of the paper [lo] 
itself. (The change of parameters which transforms the Boltsmann weights of [lo] into 
those of [9] for earlier known solutions is written in [lo]). 

and 
p = A0 + . . . + A,. Let A be the set of weights in the vector representation of D, and 
for a E 1.1" = C:=o@Ai we write Z to mean its classical part. In terms of the orthogonal 
vectors e, (1  S i < n ) ,  (ei, e,)  = Si j ,  e-i = -e;, the classical parts Ai, ,i and A can be 
written as follows: 

Let us fix some notation. Ai (0 < i < n )  denote the fundamental weights of 

Ai = e l  + .  . . +ei 
A.-, = ; (e ,  + . . I  + e,-, - e,)  
An = ;(el + ...+ e.-l + e , )  

(1 Si S n - 2 )  
(50) 

n-1 
U = (L - a1 - a2 - I ) A ~  + C(ai - - 1 ) ~ ~  + +a, - I ) A ~  

i = l  

L > a l + a 2  a ]  > a ~ > . . . > a ,  a . - l + a , > O  (51) 

where ai E Z or ai E Z + and L = 2n - 2 + k ,  (k = 1,2,  . . .) is the number of minimal 
unitary W D  model which we perturb. Let us point out here that the half-integer sector of 
the theory is irrelevant in our case of vector perturbations of CFT without fermions, and 
only the integer sector will be relevant for our S-matrix construction. It can be easily seen 
that 

It was shown in [lo] that the Boltzmann weights (here we write them in the trigonometric 
limit, while in  [IO] they are written in general elliptic form) for this RSOS model take the 
form 

[XI = sinox [ X I +  = cosox o = - 
L,T 
?I 
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and L, = Ljs ,  where s is in principle any integer coprime with L. 
The unitarity and crossing relations for these Boltzmann weights read as 

We now look for the S-matrix of the scattering process of kinks in the form [ I  1 , 1 3 1  

with some scalar function Y to be found, where U is connected with the rapidity difference 
of the incoming kinks 6 by U = 6/zi ,  and q is some constant. 

Before the constraints on Y an derived let us fix the parameter s for L,. Explicit 
comparison of the unitarity condition for Boltzmann weights (55) with the unitarity relation 
for the R-matrix (44) with the restricted model relation (49) taken into account tells us that 
the correct choice is s = - 1 .  With this choice the unitarity constraint can be satisfied by 
virtue of relation (55) provided 

Y(u)Y(-u) = I / P ( t l U )  (58) 
while the crossing relation is satisfied provided q is equal to the crossing parameter, which 
with s = -1 is equal to 17 = -3 - (4 + k)/2, and 

Y(u) = Y ( l  -U). (59) 
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The system of functional equations (58)  and (59) exactly coincide with the analogous system 
for SO in the previous section, which we have already solved. So we conjecture the solution 
Y = SO. As is well known, the solution to the crossing and unitarity conditions has an 
ambiguity in the form of the arbitrary product of CDD factors. In many physical cases this 
ambiguity is solved by the 'principle of minimality', which supposes the minimal number 
of poles for the fundamental S-matrix in the physical strip. Since we expect this principle 
to work in our case, we do not add any CDD factor to the minimal solution. (Any such CDD 
factor necessarily has a pole in the physical strip). As will be checked below in particular 
cases when the S-matrix is known, this leads to the correct answer. 

One can see that the S-matrix of the vector perturbed WDf) minimal theories fork = 1 
should take the form of the (non-restricted) SineGordon S-matrix at a special value of its 
coupling constant, since the central charge for this k is equal to 1 for each n .  Moreover, 
since the dimension of the perturbation for k = 1, eqaution (5), is the inverse of an even 
number, we should expect to have some subsector of SG S-matrix at the reflectionless point. 
Indeed, in the case k = 1 and, for example, n = 3 the restriction condition (51) leaves only 

The first set of ai corresponds to the highest weight of the vector (U) representation of D3, 
the second to that of the scalar (0) representation, and the fourth and thud to those of the 
two spinor representations, which are irrelevant for our case. (Only the integer sublattice 
of weights is relevant for D-type vector perturbations). Using the admissibility condition, 
we have the following two non-zero Boltzmann weights in this case: 

four possibilities for the choice of (a3, a2, a,): (3, 1.0); (2, 1,O); (5, 5 3 1  I, z )  and (2, $, -;). 

Both of them are representatives of the last type of non-zero Boltzmann weights in (53) and 
explicit calculation gives the same expression for each of them: 

[3 - U l + D  + U 1  

[11[31+ 
W ( u )  = 

For this case the crossing factor ( G , G ~ / G ~ G , ) U / Z  turns out to be equal to 1 for both types 
of S-matrix. It can easily be shown that the tensor structure of the Boltzmann weights (53) 
is such that at the points [n  t U]+ = 0 and [ 1 -U] = 0 it becomes a projector onto the scalar 
and adjoint representations of D,, respectively. So we see that in the k = 1 case contraction 
of the zero of W and the pole of prefactor F corresponding to the adjoint representation 
takes place. and the S-matrix becomes a scalar representation projector. 

This can be explained in terms of Sine-Gordon (SO) theory if we interpret our 
fundamental particle as a lightest breather of the SG. The obtained physical strip poles 
and zeros of the S-matrix exactly coincide with those of lightest breather-breather S-matrix 
in SG theory (241 

she  + isin fi 
she  - i s i n 5  

S(0) = 

at the reflectionless point pZ/8n  = (or in other words t = s), in full correspondence 
with the conformal dimension of the perturbing operator. It means that these two S-matrices 
should coincide. 

Another interesting limit of the S-matrix obtained is the limit k -+ w, in which 
the model under consideration takes the form of free fermions, the SO(Zn), Kac-Moody 
perturbed by the field of conformal dimension f (see equation (5) ) .  Therefore we expect the 
trivial limit (-1) for the S-matrix. It can, be checked that the proposed solution for S-matrix 
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has this property. First of all, as was pointed out in [ll],  for the parameters a, this limit 
means that a,, a,, -+ CO, a, /k ,  a, , /k 4 0. One can show that the infinite product in Y 
goes to 1 in the limit k -+ CO. It can easily be checked that the prefactor before the infinite 
product in Y together with the five types of Boltzmann weights (53) gives the zero limit for 
all of them except for the first and the third one, for which the limit is equal to -1. giving 
the *I limit for the S-matrix. From the k + 00 point of view, any CDD combination with 
the property ai@) --t 0 will not spoil this property of the S-matrix, but as we said above 
such CDD factors should be rejected by low-k checking arguments. 

Of course, it would be plausible to have a justification that the proposed S-matrix is 
correct by using other methods. One of them is the TBA check of the ground-state energy in 
the ultraviolet limit and its comparison with the central charge of the perturbed conformal 
model. Such a check should confirm the correctness of the S-matrix answer for all values 
of k. 

5. Summary 

We have shown by counting of arguments that the (21.. .1111.. . 1)-perturbations of WD, 
theories (and (21111) of W3) are integrable, which was not surprizing after we realized 
their En (and G2) imaginary coupled A m  structure at the ‘classical level’, The conjectured 
Ag)-, symmetry of their quantum S-matrix has been proved by explicit construction of 
non-local charges with this quantum group symmetry and it was shown that there are a 
set of fields, which play the role of fundamental solitons in the sense that their braiding 
relations with non-local charges give rise to the correct comultiplication for this quantum 
group. As was shown above, the choice of the correct gradation (spin gradation in our case) 
for the R-matrix of corresponding symmetry has a crucial role for the crossing symmetry of 
the S-matrix. and, moreover, allows us to find the effective coupling constant for the model. 
The gradation role problem in S-matrix construction was recently considered in general in 
I261 with the example of the C;) S-matrix. As was mentioned there, the mass ratios of the 
particles corresponding to the S-matrix poles depend on the choice of gradation and the spin 
gradation turns out to be compatible with the duality conjecture for the imaginary coupled 
affine Toda theories, which says that the mass specmm of the Toda with affine group G 
should be described by the S-matrix of the dual group of symmetry 6, As was pointed 
out in [7], our result justifies this conjecture tw: the pole of the fundamental S-matrix 
corresponding to the scalar representation reproduces the mass of lightest particle of the 
Bi’) real coupled ATFT. 

We expect the mass spectrum, particle content (higher kinks and breathers) and structure 
of the full S-matrix to be rather complicated for the general case, since even in the Virasoro 
analogue of our model-the ( I ,  2) perturbation of minimal models-the full spectrum of 
particles was not obtained in the general case of an arbitrary minimal model. In the same 
way as was shown i n  [9], one can show that the problem of spectral decomposition for 
our R-matrix is equivalent to this problem for two arbitrary representations obtained by 
the tensor product of the vector representation of the Dn algebra, which is unknown in 
the general case. Some examples of bootstrap for the SO@) symmetric R-matrix in the 
simplest particular cases have been shown in [25] and led to a complicated picture. 

The examples of integrable perturbations of W-invariant theories analysed in this paper 
certainly do not exhaust all of them, which reveal richer structure than in the Virasoro 
case. It can be seen by comparison of the Dynkin diagrams of affine Lie algebras with 
those of non-affine Lie algebras of other type X. Each case, where the former can be 
obtained from the latter X by adding to X some combination of its fundamental weights, 
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might be considered as a candidate for integrability of the perturbation of WX by the 
field corresponding to this specific combination of the weights of X. For example, it was 
recently conjectured in [27] that vector perturbed W B n  minimal models are integrable and 
that their S-matrices have AE) symmetry, which was expressed in  terms of the B, RsOS 
model with special modification of its crossing parametert. However, each of these cases 
require separate detailed investigation. 

Appendix 

Here we will show how the exponential representation for the infinite product (46) can be 
obtained. Let us denote it by &. Then 

sh f (6 - in21) 
i i n C o = C  -iln + i l n  

sh 7 (0 + in21) 

sh %(e - irr(U+ 1)) 
+iln - iln 

sh %(B + in(21+ 1 ) )  

sh f ( B  - iy + irr(21+ 1)) 
sh :(e +- iy - in(21 +- 1)) I d  

] . (AI) 

Suppose that B is purely imaginary. Then one can use the following integral representation 
for the function: 

, sh $(e  - iy + ia2(1+ 1)) 
sh :(e + iy - in2(1+ 1)) 

7 

(U) 
sh?(B+i01) 
shf(8-ior) sin 

S,: . , sin(; -a )k  i In =constant - 2 - sin(kr0) 

which is valid for any real and 01 when B is purely imaginary, and the contour C goes 
from 0 to +CO along and above the real k-axis. The constant depends on the Reimann sheet 
for the logarithm but cancels when (A2) is inserted into (AI). One can see that 

with 

o(k) = ?cos $ [ - sin (i + 2nl) k + sin (i + y - ~ ( 2 1  + 1) 
1=0 

= 2COS 
2 k 0  

One can now easily check that 

(A5) 
S + Y - R  . ky 

2 
k sin - . o(k) = cos 

We see that equation (A3) with (A5) reproduces the equivalent representation (47) for the 
infinite product, if we rotate the integration contour C to the positive part of the imaginary 

t Let us point oul that the S-mauix for vector p e r r h d  WD. minimal models, which was also constructed in 
this work and is based on the known D-type RSCS models wilh modified crossing parameter, seems to have the 
same physical ship pole structure as ow’s. 
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k-axis, which may be done for I Im0l+ Iyl/Z+ 15 + y - z1/2 < (181 + x) /2 .  Let us paint 
out here that this condition is satisfied for the physical strip (0 < Im0 < n) for minimal 
models, when t ,  y ,  ,3 get special values dictated by (48). 
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